In the context of an aerodynamic use case (UC1) of the DATANOOS platform,
https://datanoos.univ-toulouse.fr/en/use-case-enhanced-and-intelligent-aerodynamic-modeling, a concerted effort was made since 2018 to access, exchange, interoperate and reuse under the rules FAIR and towards Open access part of the Data of the H2020 N° 723402 European research project SMS, “Smart Morphing and Sensing for aeronautical configurations”, www.smartwing.org/SMS/EU

- Initiation and efficient collaboration between computer scientists from the computing center, CALMIP, (“Calcul en Midi - Pyrénées”) and scientists from the multidisciplinary SMS project in aeronautics
- Creation of a platform for data sharing, FAIRness, reprocessing and reusability, conducted under the DataNoos Academic Alliance.
- Efficient multi-disciplinary data sharing among the SMS partners from geographically distant members leading to development of new services for the computing center.
- Adoption of FAIR principles and Open Science led creation of the CALLISTO GUI https://callisto.calmip.univ-toulouse.fr/

CALLISTO is organized around an ontological view of data that are registered in a Dataverse
Data associated to the form of the wing and of the high-lift flap: example - Take-off from Toulouse-Blagnac airport

Take-off A320 Blagnac 2019 (photos of M. Braza)

Figure 3: Airfoil cross section of the wing for Take-Off conditions
Platform DATANOOS

UC1 – «Enhanced and intelligent aerodynamic data modelling »

SELECTION OF 4 CONFIGURATIONS ON A TRAJECTORY of A320 available by ONERA - Toulouse : Orly - Blagnac : Phases of take-off and cruise

Evaluation of the AERODYNAMIC FORCES : LIFT and DRAG without and with shape optimisation (MORPHING) through Hi-Fi CFD simulations at IMFT

Optimisation of the flight trajectories by ONERA simulations
IV.2 – LES DONNÉES SMS DANS CALLISTO : INTEROPÉRABILITÉ

THE SMS DATA IN CALLISTO : INTEROPERABILITY

Aerodynamic forces, 2D morphing - numerical simulations - incidence 1.8 deg - frequency 350 Hz

- Admin: Oct 19, 2020 - Smart Morphing and Sensing (SMS)
- Tô, Jean-Baptiste, 2020, "Aerodynamic forces, 2D morphing - numerical simulations - incidence 1.8 deg - frequency 350 Hz", https://doi.org/10.53729/FK2QGG73NP, Root, DRAFT VERSION

ASCII file containing aerodynamic forces around an A320 wing. From a 2D numerical simulation performed with the NSMB code. The first four columns give the physical time in seconds, the drag coefficient, the lift coefficient and the pitching moment...

Simultaneous measurement

- Admin: Jun 26, 2020 - Smart Morphing and Sensing (SMS)
- Kitous, Amnaoui, 2020, "Simultaneous measurement", https://doi.org/10.53729/FK29LPMGU, Root, DRAFT VERSION

Raw data of four measurements from the Centurion sensors. The files contain three rows with wavelength data, each row corresponds to the data of a sensor. Each file correspond to a measurement of ten minutes with a number of Reynolds of 2,2 and a...

POLIMI: 2D PIV snapshots. Take-off 34.1 m/s, AoA=4°

- Admin: Apr 21, 2020 - Smart Morphing and Sensing (SMS)
- Sainee, Alberta, 2020, "POLIMI: 2D PIV snapshots. Take-off 34.1 m/s, AoA=4°", https://doi.org/10.53729/FK2QGWVUVW, Root, DRAFT VERSION

Attached the snapshots of PIV results computed during the experimental test in MILANO on LS prototype. Please read the README file attached.

POLIMI: 2D PIV (particle image velocimetry) results file, exp. wind tunnel test in MILANO on LS model

- Admin: Apr 20, 2020 - Smart Morphing and Sensing (SMS)
- Sainee, Alberta, 2020, "POLIMI: 2D PIV (particle image velocimetry) results file, exp. wind tunnel test in MILANO on LS model", https://doi.org/10.53729/FK2QFBTXGP, Root, DRAFT VERSION

Elaborated results of the PIV measures for all tested cases (N.B. before proceeding with the analysis of the results, please read carefully the README file which contains the instructions to match the windows of the two cameras and to manage the...
CALLISTO GUI offers a shared data space that can be protected by login/password following user needs, enhanced with a fine-grained data description to ease data reusability.

The level of detail is at the scale of a scientific project, optionally sustained with an ontological description of the scientific context.

- **Software provided:**
 - Data repository
 - Data query interface
 - Advanced functionalities such as reprocessing workflows, that require ontological engineering from the projects participants with help from CALMIP ontologists.

- **Associated technical support:**
 - GUI hands-on support
 - Close collaboration for ontological engineering

CALLISTO is in continuous development, it grows with its users. What has been done so far is the result of the collaboration of CALMIP and calculus projects participants.
An ontology for easy trajectory finding

A320 trajectory from Toulouse-Blagnac LFBO to Paris-CDG LFPG. Flight date is 08/30/2013. Wind is considered zero.

Ontology concepts inherited from NASA ATMONTTO ontology

Computer view:
ONTOLOGY publicly available: https://allegro.callisto.calmip.univ-toulouse.fr/#/repositories/sms/overview and browse with graphical interface: https://allegro.callisto.calmip.univ-toulouse.fr/#/repositories/sms/gruff
Workflows available:

- Evaluation of (Power Spectral densities) through Fast Fourier Transform of pressure/aerodynamic forces/velocity signals with optimised parameters.
- Calculation and visualisation of physical quantity contours (velocities, ...) using online PARAVIEW (open access software) on CALMIP Computing Centre.

- Iso-contours of air’s density through Workflow using PARAVIEW illustrating the compressibility effects involving shock waves in cruise phases of flight: Morphing A320 wing, transonic regime, actuation frequency at 720 Hz near trailing edge, by means of piezo-actuators.

- Monitor points to extract signals: evolution of a physical quantity versus time.

- Spectral Density PSD of pressure signal at monitor point illustrating the frequencies of the turbulence vortices (see image on left).

- Iso-contours of the Q criterion coloured by the Mach number and showing the turbulence structure and formation of Secondary instability shells.
SADA (Semi-automatic data analysis)

This semi-automatic data analysis interface allows you to identify datasets in a specified repository that match the text entered in the search field. For each of these datasets, you can then examine what operations are possible and what potential results you can obtain (automatic processing flows).

Step 1: Select a repository

Smart Morphing and Sensing (SMS)

Step 2: Search by keywords

pressure

Search

FDV_53

IMP PAN - transonic - pressure measurements on profile

FDV_614

This dataset is to be used with the ParaView workflow, which extracts the relevant fields and surface values from it. Two files can be used by the workflow: a .pvt file containing 2D data bound to the computational domain, and another .pvt file (named YYYY_sfc tec) containing surface data.
SADA (Semi-automatic data analysis)

This semi-automatic data analysis interface allows you to identify datasets in a specified repository that match the text entered in the search field. For each of these datasets, you can then examine what operations are possible and what potential results you can obtain (automatic processing flows).

Step 1: Select a repository
- Smart Morphing and Sensing (SMS)

Step 2: Search by keywords
- pressure

Search

Workflow

S0 → SAPD1 → S1 → Paraview_Display

S1's Information
- SAPD1
- Paraview_Display

“Service displaying pressure distribution data Using Paraview”
SADA (Semi-automatic data analysis)

This semi-automatic data analysis interface allows you to identify datasets in a specified repository that match the text entered in the search field. For each of these datasets, you can then examine what operations are possible and what potential results you can obtain (automatic processing flows).

Step 1: Select a repository

- **SMS**

Step 2: Search by keywords

- pressure

[Search]

Workflow

- S0 → SAPD1 → S1 → Parview_Display

Get results

S0's Information

- void → SAPD1

"This dataset is to be used with the Parview workflow, which extracts the relevant fields and surface values from it. Two files can be used by the workflow: a .plt file containing 2D data bound to the computational domain, and another .plt file (named YYY_sfc.tec) containing surface data."
SADA (Semi-automatic data analysis)

This semi-automatic data analysis interface allows you to identify datasets in a specified repository that match the text entered in the search field. For each of these datasets, you can then examine what operations are possible and what potential results you can obtain (automatic processing flows).

Step 1: Select a repository
- Smart Morphing and Sensing (SMS)

Step 2: Search by keywords
- pressure

Search

Workflow

S0 → SAPD1 → S1 → Paraview_Display

Analyze and get files

Go

Downloadable files:

“This dataset is to be used with the Paraview workflow, which extracts the relevant fields and surface values from it. Two files can be used by the workflow: a plt file containing 2D data bound to the computational domain, and another plt file (named YYY_sfc.tec) containing surface data.”

Density [kg/m^3]
Aerodynamic performance in transonic regime around an A320 airfoil by means of electroactive morphing through vibration and slight deformation of the near-trailing edge region at high Reynolds number

By
Jean-Baptiste Tô1, Thierry Louge2, Clément Rouaix1, César Jimenez Navarro1, Abderahamane Marouf1, Marianna Braza1
1IMFT- Institut de Mécanique des Fluides de Toulouse, UMR 5502 CNRS-INPT-UT3
2CALMIP Supercomputing Meso - Centre, UMS3667 CNRS-INPT-UT3
3ICUBE Laboratoire des sciences de l'ingénieur, de l'informatique et de l'imagerieUMR 7357 CNRS

Data Paper prepared with the contribution of CALMIP
On CALLISTO platform: https://callisto.calmip.univ-toulouse.fr/
https://doi.org/10.48531/JBRU.CALMIP/19XGRY
CALLISTO also allows register DOIs for datasets, which has been done for the datasets presented in this paper. These DOIs are the following:

Aerodynamic forces; 2D morphing - numerical simulations - incidence 1.8 deg - static case:
https://doi.org/10.48531/jbru.calmip/buabfj

Aerodynamic forces; 2D morphing - numerical simulations - incidence 1.8 deg - frequency 710 Hz: https://doi.org/10.48531/jbru.calmip/robira

Aerodynamic forces; 2D morphing - numerical simulations - incidence 1.8 deg - frequency 720 Hz: https://doi.org/10.48531/jbru.calmip/echixn

Aerodynamic forces; 2D morphing - numerical simulations - incidence 1.8 deg - frequency 730 Hz: https://doi.org/10.48531/jbru.calmip/jx2o55

Aerodynamic forces; 2D morphing - numerical simulations - incidence 1.8 deg - frequency 750 Hz: https://doi.org/10.48531/jbru.calmip/x5unj4

plt dataset for Paraview visualization - 730 Hz morphing actuation:
https://doi.org/10.48531/jbru.calmip/p76fwg
CONCLUSION

- Dataverse and Ontology operational on CALMIP/CALLISTO able to handle a DMP of a project
- Interoperability and Reuse of the data sets
- Example of Datapaper elaboration in open access on CALMIP CALLISTO
- Development of services (workflows) in open, useful for the data Reuse
- High interest for the scientific advancing - improvement of the approaches among partners